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HEAT TRANSFER WITH MELTING OR FREEZING IN 
A WEDGE 
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Abstract-The objective of this research was to obtain an analytical solution to predict the temperature 
distribution and the motion of the interface in a pure liquid or eutectic alloy solidifying or melting in a 
wedge shaped enclosure. In the analysis it was assumed that the initial temperature of the medium is 
uniform and the surfaces of the wedge are maintained at uniform, but not necessarily equal, temperatures. 

The solution to the problem was obtained by the superposition of the solutions to two auxiliary problems. 
The first of these was the problem of heat conduction without phase change, but with the same initial and 
boundary conditions as those of the actual problem. The second subproblem was that of heat conduction 
with change of phase, but with the initial and boundary temperatures equal to zero. In the later subproblem 
the latent heat liberated due to the phase change was represented by a moving surface source along the 
interface. The temperature distributions for these auxiliary problems were obtained by using Green’s 
function. 

The results of the analytical solution presented here agree with previously published experimental and 
numerical results for special cases to within 5 per cent. 
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NOMENCLATURE 

characteristic parameter in the 
equation of the hyperbola; 

arbitrary constant; 
specific heat; 
unit normals in r and 4 direc- 

tions; 
thermal conductivity; 
latent heat of fusion; 

integer constant; 
temperature distribution due 

to conduction only; 
temperature distribution due 

to moving surface source; 
radial co-ordinate; 

integration variable; 
dimensionless radial co-ordi- 
nate; 
time; 
integration time variable: 
dimensionless temperature 

field ; 
fusion temperature; 

t Now, 
India. 

R. K. Budhia Co., Main Rd., Ranchi Bihar, 

TE, 

Subscripts 

F, 

k, 

P? 

initial temperature; 
dimensionless initial tempera- 

ture; 
temperature in the liquid 
region : 
dimensionless temperature in 

the liquid region ; 
temperature in the solid region; 
dimensionless temperature in 

the solid region; 
surface temperatures at 4 = 0 

and 4 = 40, respectively; 
thermal diffusivity; 
latent heat to sensible heat 

ratio (L/pc( TF - T,,,)); 

integration variables; 

n:, A;, characteristic distances for 
one-dimensional interfaces; 
angular co-ordinate. 

fusion quantity; 
initial quantity; 
liquid quantity; 
index; 
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s, solid quantity. 

Functions 
erf x, error function; 
erfc x, complementary error function; 
exp(x) or eX, exponential function; 

I&X)’ modified Bessel function of 
first kind; 

J,(x), Bessel function of first kind; 
G(r, 4, r’, 4’; t, t’), Green’s function; 
R(c$, t), R’(4), functions for the interfacial 

curve. 

1. INTRODUCTION 

HEAT transfer with a change of state due to 
melting or freezing occurs in many engineering 
systems, e.g. solidification of castings, freezing 
and thawing of foodstuffs and soil, constant- 
temperature sinks for energy-storage devices, 
and geophysical phenomena of ice formation. 
In all these problems there exists a moving free 
boundary, separating the liquid and the solid 
phases, whose location and shape are not known 
a priori. Since the temperature distributions in 
the two phases depends on the location and 
shape of this interface, it is necessary to consider 
the temperature distributions and the interface 
motion simultaneously in any analyses of such 
problems. Moreover, these systems are non- 
linear in nature due to the energy balance at the 
moving interface [ 11. 

Two excellent reviews [2, 31 of the field show 
that till 1963 published work in heat transfer 
with melting or freezing was limited to problems 
which can be described in terms of a single space 
variable. In most practical situations, however, 
one encounters two- or three-dimensional prob- 
lems and since 1963 several investigations 
dealing with two- or three-dimensional systems 
have been reported in the literature [4-lo]. 

Allen and Severn [4] and Poots [5] presented 
approximate solutions for the solidification of a 
liquid initially at freezing temperature in a 
square prism with the boundaries of the prism 
maintained at a constant temperature. Springer 
and Olson [6] developed a finite difference 

scheme for axisymmetric solidification or melt- 
ing of materials contained within two concentric 
cylinders of finite length. Their difference scheme 
has provision for variable thermal properties 
and various boundary conditions. Sikarskie and 
Boley [7] obtained solutions for two problems 
in which two-dimensional effects were intro- 
duced by spatial variations of heating or cooling 
conditions along one boundary surface of a 
slab. Rathjen [8] has presented an analytical 
solution for melting or freezing in an infinite 
rectangular internal corner with the material 
initially at a uniform temperature and the sur- 
faces maintained at a constant temperature, and 
compared his analytical results with those of a 
numerical scheme for the same problem. Jiji 
et al. [9] published some experimental results 
for freezing of water in an internal corner and 
compared their experimental results with those 
obtained numerically by Rathjen [S]. Recently, 
Lazaridis [lo] published a numerical scheme 
to treat multidimensional problems with boun- 
dary conditions of constant temperature and 
Newtonian cooling. 

This paper presents analytical solutions for 
melting or freezing of materials in wedge 
shaped enclosures with wedge angle between 
0- and 360-degrees. The postulates used in the 
solutions are: (1) The material has a sharp 
fusion temperature. (2) The thermal and physical 
properties of the solid and liquid phases are 
constant and are independent of temperature. 
(3) The initial temperature of the material inside 
the wedge is uniform and the surfaces of the 
wedge are kept at constant, but not necessarily 
equal, temperatures. The analytical solutions 
presented in this paper can be used directly 
in many engineering applications and can also 
serve as “starting” solutions for numerical 
analyses. 

2. METHOD OF ANALYSIS 

Suppose a liquid at a uniform temperature 
T greater than or equal to its freezing tem- 
perature TF, fills a wedge shaped space as 
shown in Fig. 1. At time zero (t = 0), the two 
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faces of the wedge (4 = 0 and 4 = 4,) are Equations (7)-(9) describe the conditions 
suddenly brought to constant temperatures at the interface. Equation (7) states that the 
lower than T,. Solidification starts at both faces temperature at the interface between the solid 
and as time progresses the boundary between and the liquid phase equals the freezing tem- 
the solid and liquid phases moves into the perature. Equation (8) represents the energy 
liquid phase. If the density of each phase is balance at the interface, i.e. the heat conducted 
uniform, heat is transferred in both phases only away through the solid phase equals the heat 
by conduction and the problem can be stated reaching the interface from the liquid phase plus 
mathematically as follows: 

:R(f$,t) < r < ‘co,0 < 4 < (ho 

T, = TWX (b = 0,r > 0;t > 0 

T, = Tw,, cp = &,r > 0;t > 0 

q = 7y 0 < 4 < 402 
0 < r < cc at t = 0 

TL = _rl 0 < 4 < dJo> 

I’ + % ; r > 0 

T = TL = TF 0 < 4 < $0, 

r = R(#J, t); t > 0 

at r = R($, t), 0 < 4 < c$(,; t > 0 

R=O 0 < c$ < c#)*, t = 0 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

the latent heat generated due to solidification. 
Equation (9) gives the initial position of the 
interface. 

With subscripts s and Linterchanged, Equa- 
tions (l)-(9) represent the mathematical state- 
ment of a solid material melting in a wedge 
shaped enclosure. For the melting problem the 
surface temperatures TWX and Tw, are higher 
than the fusion temperature and the latent heat 
in equation (8) is negative because heat is 
absorbed at the interface during melting. 

Similarity in the problem 

As shown below, a similarity transformation 
can reduce the number of independent variables 
for the problem from three (r, 4. t) to two 
[r/J(4at)] and 4. A s a result of the similarity in 
the system the equation of the interface can be 
written as 

r = R(c#I. t) = J(4at)R’($) (10) 

where R’ is a function of 4 only. 
To show that similarity exists, define new 

function 7, FL, !? (for b > 0) as follows: 

q(r, 4, r ; b) = T@, 4, b’t) 

TL(r, 6 r ; 4 = T,(br, 4, b2t) 

I?(r, 4, t ; b) = 1 R(+, b2t). 

where T,(r, 4, t) and TL(r, q6, t) are the tempera- It can easily be verified that these functions 

ture distributions in the solid and the liquid also satisfy equations (l)--(9). The new functions 

phases respectively, R(c$, t) is the function which T, FL and I? must, therefore, be equal to T, TL 

specifies the shape and location of the unknown and R, respectively, because both satisfy the 

phase boundary, TWX and Tw, are the surface same initial-boundary value problem: 

temperatures, as and L-Q are thermal diffusivities 
in the liquid and solid phases respectively, and 

r(r, 6 t ; b) = T@r, 4, b2t) = 7Jr, At) 

Lis the latent heat of fusion. FJr, 4, t ; b) = T,(br, 4, b24 = T,b-, 4,t) 
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I?(+, t ; b) s ; R((b, b2t) = R(qb, t). 

These three equations are identities in r, C#J, t 
and b. Thus, they hold in particular for b2t = 
1/4a, which gives : 

= T:[rlJW), 41 
T,(r, A t) = T,[dJPW, 4~~ Wal 

T:, T’E and R’, which constitute the solution to 
the problem, are therefore only functions of the 
two independent variables r/J(4at) and 4. 

In the method of solution presented below, 
the similarity condition has not been used at 
the outset to reduce the number of independent 
variables in the diffusion equations. It will be 
shown later, however, that the independent 
variables r, c$, t in the solution can be combined 
into the two variables r/J(4at) and 4. The reason 
for presenting the similarity argument at this 
point is to show that the equation of the inter- 
face is given by equation (10). This equation 
implies that the moving interface can be plotted 
into a stationary one by using r/J(4at) and C#J as 
the coordinates. 

Method of solution 
Introducing the dimensionless temperature 

variables 

T,* = T - TF 
TF - TWX 

(114 

T* = & ‘L - TF 
L (lib) 

equations (lH9) become: 

PT* 1 aT; 1 -a2T* 1 aT* _-L+;ar+“‘=-~ 
dr2 r 84 as at 

(12) 

a2T* 1 aT; 1 a2T 
L+;ar+yL 

ar2 r ad2 
= $2 (13) 

Tz=TEx=-l $=O,r>O;t>O (14) 

T; = TzY 4 = cjo,r > 0;t > 0 (15) 

T* = T* = & Ti - TF 
L I 

ks ‘F - Twx 

O<~<~,,r>O:t=O (16) 

Tz=T* O<~<~,,r-+m;t>O (17) 

T; = T; = 0 

0 c 6 -=c 40,r = R($,t);t > 0 (18) 

pL aR - 
= ( TF - TWX) at 

(19) 

atr = R(+,t),O < 4 < +,,;t > 0 

R=O O<~<&);t=O. (20) 

To make the problem analytically tractable, 
assume that the thermal diffusivities in the liquid 
and solid phases are equal, i.e. as = aL = a. 
Under this assumption, the heat conduction 
process in the solid and liquid phases described 
by equations (12) and (13) can be represented 
by the single equation: 

a2T 1 aT 1 aT 1 aT 
p+;z+-ZZ=i& 

r 84 
(21) 

with T = T: in the solid phase and 
with T = Tz in the liquid phase. 

The assumption that the thermal diffusivities 
are equal is not necessary when the liquid is 
initially at the freezing temperature (TF = 0) 
because there is no heat diffusion in the liquid 
phase for this case. An empirical method to 
correct for the error introduced by this assump- 
tion when the liquid is initially a temperature 
above the freezing point will be presented later. 

The problem now reduces to solving equation 
(21). The various conditions to be satisfied by 
T(r, 4, t) are given by equations (14)-(20) in 
which T is substituted for T: and T2. The 
method of superposition of the solutions of 
two separate problems will be used to solve the 
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problem stated above. The two subproblems 
used to construct the solutions are: 

(a) The problem of heat conduction, without 
change of phase, in a medium initially at Tr 
with the wedge surfaces $J = 0 and 4 = @() 
changed to, and maintained at, constant tem- 
peratures Tz,x and Tzy, respectively, for all 
times t > 0. 

tion G(r, 4, r’, 4’; t, t’) must satisfy the conduction 
equation with a homogeneous boundary condi- 
tion of the first kind subject to zero initial 
conditions. Carslaw and Jaeger [l] give the 
following expression for the Green’s function 
in a wedge shaped space: 

(b) The problem of a moving source of heat 
at the interface [r = R(4, t)] in a medium 
initially at zero temperature with the wedge 
surfaces maintained at zero temperatures. The 
moving source at the interface replaces the 
latent heat generated due to the phase change. 

The superposition solution is stated mathe- 
matically below: 

G = 1 
4” c 

sin p4 sin p$’ 

P 

x 
s 

( exp [c@(t - t’)] J,(<v). J&Sr’) d& (31a) 

AnO equivalent expression for equation (31a) 
in somewhat more convenient form is: 

T(r, 4, ~1 = PO-, 4, t) + Qk, 4, t) (22) 

where P(r, 4, t) is the solution to the conduction 
problem without change of phase and Q(r, 4, t) 

is solution to the “moving source” problem. 
The pure conduction problem can be posed as 

S2P 1 dP I a? I ap 
g+;x+72=;x 

r a4 
(23) 

with the conditions 

1 
GE 

Q&t - 0 c 
sin p+ sin p@ 

P 

x exp (- &$$).~~ ($$F)) (31b) 

wherep = nxlc$,, n = 1,2,3,. . x, 

Ip = Modified Bessel function of first kind of 
order p and J, = Bessel function of first kind of 
order p. 

P(r, 0, t) = Tzx = - 1 (24) 

P(r, 40, 0 = Tz, (25) 

P(r, 4.0) = TT (26) 

while the function Q(r, 4, t) must satisfy the 
equation 

According to Ozisik [ 111, the expression for 
P(r, 4, t) can be written in terms of G(r, 4, r’, 4’; 

t, t’) as follows: 
T’ 60 

P(r, 4,t) = 
s s 

G I,, = o TF . r' d$’ dr’ 

r’=Od=O 

1 1 a’Q 1 aQ &T+;s+i2=;at Z’Q aQ r 84 (27) + 2 / dfj.(l:l;)~b,=o Cxdr’ 
i’=O 0 

with the conditions 

Qk, 0, 0 = 0 

Qtr. 40, t) = 0 

Q(r, A01 = 0. 

P-solution 

(28) 

(29) 

(30) 

The P-solution was obtained by means of 
Green’s function. The appropriate Green’s func- 

The first term on the right-hand side of 
equation (32) accounts for the effect of the 
initial temperature whereas the second and the 
third terms together represent the effects of the 
boundary conditions. 

The first term in equation (32) is evaluated by 
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substituting for G from equation (31b). With 
this substitution the first term becomes 

‘a 40 
T? 

&k ssc sin p$~ sin p@’ 

r’=O#‘=O p 

terms on the right-hand side of equation (32), 
which accounts for the effects of the boundary 
conditions, was evaluated by substituting equa- 
tion (31a) for G. This substitution yields 

x exp( r2~:‘2).zp(~).id~.d*,. %z(Tzx - TLCoSP4p).P~sinp~ 

x /dtj$j ( exp [ - at2(t - t’] 

0 0 0 

This expression can be reduced further by 
integrating with respect to 4’ and then substitut- 
ing the dimensionless variables v = r’/J(4cct) 
and r* = r/J(4crt); this yields the expression 

4T* 
2 

40 c 

+$[I - cosp$,] 

P 

m 

X 

II 

vexp[-(r *’ + v”)] .1,(2r*v) dv. (33) 

The integral in the preceding expression 
has to be evaluated numerically. For convenience 
in computation the order of summation and 
integration will be interchanged. Making this 
change and reordering some of the terms, the 
expression can be written as: 

ST+” 

40 s 

v e -(r’-VP 

0 

X [C sin ~‘4 e - 2v,* 

P’ 
. Zp’(2vr*) . dv 1 

P’ 

where p’ = (2n 
The integral 

t l)n/4, and n = 0, 1,2,. . . cc. 
was evaluated numerically by 

using the forty-point Gaussian-Legendre quad- 
rature formula [14]. For this purpose the upper 
limit of the integral was replaced by a finite 
limit either equal to (I* + 5) or two times r*, 
whichever was greater. The infinite series in 
the brackets converges for finite values of v and 
r* because the function eezvr* 1;(2vr*) decreases 
monotonically with increasing p’. The infinite 
series was truncated at that value of p’ for 
which ewzvr’ rp(2vr*) < 10m6. 

The difference between the second and third 

x Jp(@) J,(@‘). d& 

After integration with respect to t’ and r’ 
the above expression reduces to 

t (TzX - T~ycosp$o).sinp~ 
0 c 

P 

If the first integral in the brackets is evaluated 
as shown in [12], the preceding expression 
becomes 

T,*, 
sinp$ 2 

p $0 c 

sin p4 

Tw*, cos ~6, ___ 
P 

P 

- T,,Ty ~0s ~4~) 

sin pq5 s JP(@) e-a<*r 
5 

d5. 

0 

Some of the infinite series in the above 
expression can be summed by using the relations 

[I31 

n=l 

and 
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Substituting these series and letting u = rr, 
the original expression can be written as 

0 

The integrals in the above expression can be 
evaluated by using the relation [12] 

s J,(u) e - (Ut/+),$ du 

24 

Finally, the difference between the second and 
third terms on the right-hand side of equation 
(32) is given in terms of dimensionless space 
variable r* 

Jn * c sin p4 
--r 

40 

(Tw: - ~W*~COSP~~).-- 
P 

The infinite series in the third term of equation 
(34) is truncated at that value of p for which 

e-(r*z/2) [ZcP_ ,,,2(r*2/2) + Z~P+l,,2(r*2/2] < 10d6. 

Combining (33) and (34), the P-solution can 
be written as 

cc 

qr*, ($) = !y ve-“*-“‘2 

0 s 
0 

X [C sin $4 _ 2ire 

P’ 
$,(2vr*) dv 

1 
P’ 

+Tz+(l-$) + T$($j 
_ & r* 

40 c sin pc$ 

(Tw*x - T;ycosP#o).p 

(35) 

As a check, the P-solution computed by the 
above method was compared with closed form 
solutions available for 180- and 90-degree 
corners [l] and it was found that the results 
agreed within five decimal places. 

Q-solution 
The Q-solution can be obtained by considering 

a “moving surface source” of heat in the region 
r > 0, 0 < 4 < c$o along the interface r = R(cj, 
t). This heat source has physically the same effect 
on the temperature field as the phase change and 
replaces the latent-heat terms in the original 
problem statement for the system. The tem- 
perature distribution due to such a moving- 
surface source can be obtained by using Green’s 
function for the problem. 

It is known that the Green’s function G(r, 4, 
r’, 4’; t, t’) gives the temperature distribution due 
to an instantaneous line source of unit strength 
at (r’, 4’) liberating (or absorbing) heat at t = t’ 
in a medium initially at zero temperature with 
the wedge surfaces maintained at zero tempera- 
tures. Thus, the temperature distribution due to 
the heat liberated by the moving surface-source 
along the interface in time interval dt’(at t = t’) 
can be obtained by integrating along the inter- 
facial curve the product of G and the strength 
of a differential source at (R’(d’, t’), t’) on the 
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interface. The expression for the temperature 
distribution obtained by this method can then 
be integrated with respect to t’ between the 
limits t’ = 0 to t’ = t to yield the temperature 
distribution in the system with the moving 
surface source liberating heat continuously for 
t > 0 along the interface. 

To obtain the strength of a differential source 
at point (R(@, t’), t’) on the curve the following 
procedure was used: An infinitesimal length 
(dl’) of the curve at (R(@, t’), t’) is equal to 
J[(~R/@J’)~ + R2] .d$‘. The normal velocity of 
the moving source at (R . 4’) is 

or 

where <, and r; are unit normals in the r’ and 
4 directions with the direction of the normal 
velocity in the direction away from the solid 
phase. 

The area covered by the infinitesimal length 
(dl’) of the moving source during time dt’ is 
R@R/&‘) d@ dt’. The latent heat liberated by 
the differential source during time dt’ at (R,@) 
on the interfacial curve is 

LpR(iTR/at’) d# dt’. 

The strength of the differential source is defined 
as 

1 

PC&? - TWX) 
. LpR $ d# dt’ 

where the temperature difference (7” - T’,) is 
introduced in the preceding expression to 
normalize the temperature. 

The Q-solution is therefore, given by 

t 40 

Q(r, 4, t) = 
s s 

dt’ B. R g 

0 0 

G(r, c#f, r’, 4’; t, t’) d@. 

Substituting equation (31b) for G gives: 

f &I 

x sin P$J 
dt s s aR -- 

cc _ t,) R - z. sin ~4’ 

0 0 

The expression for Q(r, 4, t) can be written in 
terms of the dimensionless variables q = R/ 

J&4, r*, and r = t’/t. The choice of these 
dimensionless variables is dictated by the simi- 
larity conditions in the problem. Equation (10) 
for the interface becomes in terms of v]: 

v = R’(6) (37) 

and the expression for Q becomes in terms of 
the dimensionless variables 

Q(r*, 4) = y 
0 c 

P 

I m, 

x sin p$ 
s s 

& q2sinp4’ 

0 0 

x exp( - ‘21 T :“).Ip(“~‘~)~*)d@ 

(38) 

where r] is related to 4 by equation (37). 
Once the function R’(c#I’) is determined (or 

specified) the integrals in the Q-solution can be 
evaluation. numerically. For convenience in 
numerical computation equation (38) can be 
reordered and written as 

2p1 40 dr 

Q(r*,4) = 0 1_2 q2 
s s 
0 0 

x exp 
q2t + r*2 

- 
1-r 

+ 2rl(J+-* 
l-r 
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X [C sin p# sin p$’ exp (_ ~~~~~ 

P 

The infinite series in the above equation was 
truncated at that value of p at which 

The double integral in the equation was evalu- 
ated by using the Gaussian-Legendre quadra- 
ture formula twice, once for r and once for 
#‘. A twenty-point Gaussian quadrature for- 
mula was used for r in the range 0 < ‘c < 1 and 
a forty-point quadrature formula was used for 
Cp’ in the range 0 < 4’ < 40. Increasing the 
number of abscissa points in the quadrature 
formula affects the value of the Q-solution only 
in the fifth decimal place. 

The P- and the Q-solutions can now be com- 
bined according to equation (22) to give the 
dimensionless temperature distribution ~(r*,~} 

ve - (*‘- VP 

X [C sin p’$ _ 2vr* 
____ e 

P‘ 
Zp.(2vr*) dv 1 

(39) 

where 

T = T$ for I+* < q O<#<#, 

T = Tz for r*, 2 r] 0 < 4 < 40. 

The equation for the interface curve must be 
known before the above expression can be used 
to calculate the temperature distribution. To 
obtain an analytical solution for the interface 
curve, the condition at the interface given by 
equation (18) can be used. This condition gives: 

?i 
8T* 

40 s ve-“*-V’2 

0 

X ic sin p’yJ 
-e 

_ 2vr* 

P’ 
Ip,(2vr*) dv 

I 

(40) 

The point designated by co-ordinates (r*,Cf) 

in equation (40) lies on the interface, i.e. for any 
given I$, r* = R’(4). Equation (40) is a non- 
linear integro-differential equation for r] or 
R’(4’). In principle, equation (40) could be solved 
to get the expression for R’(+‘), which in turn 
would give the equation for the interfacial 
curve. However, because of its complexity 
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equation (40) is not amenable to an analytic 
solution. Instead, an equation for the inter- 
facial curve was assumed initially and from it the 
expression for R’(qY) was obtained. 

The equation for the interfacial curve may 
contain n parameters which can be evaluated 
by solving n-simultaneous equations, obtained 
by writing equation (40) for n points on the inter- 
face. Because this procedure is terribly cum- 
bersome, a one-parameter hyperbola was used 
to represent the interface and the parameter was 
evaluated by trial and error to satisfy equation 
(40) at one point P on the interface as shown in 
Figs. 1 and 2. A posteriori it will be shown that 

FIG. 

SOLID -Ts Xx 

n 1,,,1,,11,1,11,,,, 111111111111, d= 

-TL 

0 

Q 
TWX 

r- 

1. Schematic sketch illustrating solidification 
liquid in a wedge (4, < 180”). 

of a 

the one-parameter hyperbola obtained in this 
manner satisfies the condition imposed by 
equation (40) at other points on the interface. 

From the physical condition of the problem 
it is apparent that the hyperbola chosen to 
represent the interface must be asymptotic to 
the lines AB and AC in Figs. 1 and 2. Far away 
from the corner of the wedge the surfaces 4 = 0 
and 4 = 40, respectively, will produce inter- 
faces of AB and AC which can be predicted from 
the one-dimensional Neumann’s solution [ 11. 
The distances, IX or Izy. in Figs. 1 and 2, which 
characterize the posltlons of the solid-liquid 
interface for the one-dimensional case when the 

FIG. 2. Schematic sketch illustrating solidification of a liquid 
outside a wedge (+0 > 180”) with unequal surface tem- 

peratures. 

thermal diffusivities of the liquid and solid 
phases are equal, are given [l] by the equation: 

T e-” T.*e-“2 - _w - ’ = (&a. 
erf 1 erfc 2 

(41) 

where L E LX for T, = T,*, and 

J. z JY for T, = Tw*,. 

Obviously, when the surfaces of the wedge are 
at equal temperatures, LX = AY = I and Tz*, = 
Tw*, = T,. 

The equation for the interface can be obtained 
by writing the equation for a hyperbola with A 
as its pole and the shifting the pole from A to 
the corner of the wedge. With 1, and JY known, 
the equation for the one-parameter hyperbola 
interface is given by the equation : 

(ye sin 4’ - 1J2(sin2 4,/2 - cos 4,/2)(cot’ f&/2) 

+ 2(v] sin 4’ - J,)(q cos f#~’ - LX cot $) cot 4,/2 

where, 

=a 
2 

(42) 

II/ = cot-’ (n&J + cos& 
sin f$o 
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and a is the flexible parameter in equation (42). 
The function for q or R’(&) is now given in 

implicit form by equation (42) but, as mentioned 
previously, the characteristic parameter a must 
be evaluated by trial and error. 

To determine the value of the parameter a, 
initially it was taken as zero corresponding to 
the two asymptotic solutions intersecting. Then, 
a was incremented in steps of 0.2 until the left 
hand side of equation (40) was positive and 
negative for two consecutive values of a. Finally, 
linear interpolation was used to obtain the next 
trial value for a. This process was repeated until 
the left-hand side of equation (40) was zero to 
within a tolerance of +O.OOl. With a specified, 
the interfacial curve can be plotted by using 
equation (42) and a check whether equation (40) 
is satisfied at points other than P on the inter- 
facial curve can be made. 

For all cases discussed in the last section, the 
value of a which made the left hand side of 
equation (40) equal to zero at point P within the 
tolerance specified above, was within 10 per cent 
of the value required to satisfy the interfacial 
conditions at any other point Y*, 4. Thus, as 
shown in more detail in Sec. III, for all practical 
purposes a one-parameter hyperbola can repre- 
sent the interfacial curve with satisfactory 
accuracy for most engineering calculations. 

Once the interfacial curve is known, the 
temperature distribution in the liquid and solid 
phases are given by: 

for r* < R’(4),0 < 4 < $0 (43) 

and 

for r*, 2 R’(4), 0 < #J < c$~, (44) 

where (r*, 4) is given by equation (39). 

Simplification of Q-solution when the temperature Changing the integration variable from 0 to 
of the two wedge surfaces are equal +’ in (47), then substituting for the first integral 

When the face temperatures are equal, the in equation (46), the expression for Q reduces to 

Q-solution given by equation (38) can be simpli- 
fied by using the symmetry characteristics of the 
solutions about the line 4 = $,/2. From equa- 
tions (37) and (42) the symmetry property gives 
for the interface curve : 

yI = R’(c#J’) = R’(& - 4’); 2 d 4 < (#lo. (45) 

To make use of the symmetry condition 
about the line 4 = $,/2, the integral in equation 
(38) is separated into two parts, or 

+ 

s 

v2 sin p@ exp (V2({r!+r “‘) 

0 

x Ip (‘yfr*) d4j. (46) 

The first integral with respect of 4’ on the 
right-hand side of equation (46) can be simplified 
further by defining a new variable 0 = $. - 4’. 
In terms of this new variable the first integral 
becomes 

0 

1 i --tf’JZ + r*2 
- q2 sinp(+, - 0)exp 

l-t > 

(47) 

and equation (45) becomes in terms of 0 

‘I = R’(O). 
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1 

Q2/ c s dz 
sinp@ - 

0 l-r 
P 0 

+ sin p@] d@. 

For n odd, sin p(c$ - 4’) + sin p@ = 2 sin pc#i 
and for n even, sin p(c$ - +‘) + sin ~4’ = 0. 

Therefore, the expression for Q simplifies to 

(48) 

3. RESULTS AND DISCUSSION 

As shown in the preceding section, the solution 
to the problem of freezing or melting in a wedge- 
shaped comer section includes the location of 
the interface and the temperature distribution 
in the solid and liquid phases. Using a single 
parameter hyperbola with a characteristic para- 
meter a, once the value of this parameter has 
been determined from the appropriate integro- 
differential equation, the interfacial curve can 
be represented by equation (42) and the tempera- 
ture distributions in the solid and liquid phases 
are given by equations (43) and (44), respectively. 

The solution contains the parameters 40, 

P, T-7, I$, r* and CJ~ and their ranges are: 

0 < 4. < 271 

T;,, 6 0 

It is difficult to present results for all possible 
combinations of independent parameters in a 
comprehensive form. However, the method 
presented here can be used to make calculations 
for any combination and their accuracy can be 
estimated from the results of several examples 
which can be compared with data in the litera- 
ture. 

In the presentation below the simplest case is 
considered first and subsequent examples follow 
in an ascending order of difficulty. 

Example 1 
The liquid in an internal corner (90’ wedge) 

is at fusion temperature with the surfaces of the 
wedge maintained at equal temperature lower 
than the fusion temperature. The value of the 
pertinent parameters are: 4. = 90”, /I = 1.5613, 
T?=O T* =T* z-1. 

‘The loca%n of twhye interface is shown in Fig. 3. 

- ANALYTICAL, SOLUTION 

0 LAZARIDIS [IO] 
NUMERICAL SOLUTION 

X RATHJEN’S [a] SOLUTION 

cIS/(2~‘1.0 

FIG. 3. Interfacial curve for internal corner with the surfaces 
maintained at equal temperatures: (a) Liquid initially at the 
fusion temperature; (b) Liquid initially at a uniform tem- 
perature above the melting point. (Comparison of analysis 

with results from [8] and [lo].) 

For comparison the numerical results of Laza- 
ridis [lo] for this case are also plotted in the 
same figure. The interfacial curve obtained 
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from the general analytical solution agrees with 
Lazaridis’ numerical solution to within 5 per 
cent. 

It should be noted that when the .liquid is 
initially at the fusion temperature there is no 
diffusion of heat in the liquid phase and the 
solution is, therefore, independent of the ratio 
Q$,. In such a case, the analytical solution 
presented in this paper is exact for any value 
of CQXL. 

Example 2 
Solidification of a liquid initially at a tempera- 

ture higher than the fusion temperature with the 
surfaces of the wedge at equal tem~rature but 
lower than the fusion temperature. 

For such cases the analytical solution is 
exact when the ratio of the thermal diffusivity 
in the solid to that in the liquid phase is unity. 
For the cases where the ratio as/a, is not unity, 
the analytical solution is not exact but will, as 

- ANALYTICAL 
SOLUTION 

#so = 90” 
X RATHJEN [6] 

0.3 Ti * = 0.3 

B = 0.25 

0.2 aSIai= I.0 

0.1 
LIOIJID 

-0.1 

b 
0 -0.2 

; 
-0.3 - 

iz 
2 -0.4 - 

4 

I- -0.5 - 

-0.6- 

-0.7 - 

-0.6 - 

-0.9 - 

-1.0 I I I I I I I 
0 0.2 0.4 0.6 0.8 I.0 I.2 I.4 

r* 

FIG. 4. Temperature along C$ = 45” vs. r* for internal corner. 

shown later, give a good approximation for the 
location of the interface with some empirical 
corrections. 

With the ratio of diffusivities is equal to unity 
and 40 = 90”, TF = 0.3, p = 0.25, the location 
of the interface and the plot of T at C$ = 45” vs. 
r* are presented in Figs. 3 and 4, respectively. 
The results from the general analytical solution 
agree with those obtained by Rathjen [8] to 
within 5 per cent. 

In Figs, 5 and 6, the interfacial curves for 
TF and several /I’s are plotted for wedge angles 
60 and 270 degrees respectively, No numerical 
or experimental results for these wedge angles 
are available in the literature for comparison. 

When the ratio of thermal diffusivities is not 
equal to unity, a first approximation for the 
location of the interface can be obtained from 
the analytical solution. An inprovement in 
this approximation can be made by using the 
following empirical approach. 

It is known that either for equal or for 
unequal thermal diffusivities of the two phases, 
the interfacial curve at distances far away from 
the corner must be asymptotic to the lines 
representing the interfaces for the one dimen- 
sional cases. For the analytical solution the 
interfacial curve for the wedge has been made 

Ipo 860’ 

Ti’ = 0.3 

/ TWX l =TwY*=-I.0 

FIG. 5. Interfacial curves for solidification in a 60”-wedge. 
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#bo’2?o’ 
Ti's0.3 
TWX* = TWy' = - I .O 

as/q_= 1.0 

FIG. 5. Interfacial curves for solidification outside a 270”-wedge. 

asymptotic to the lines representing the one- 
Dimensions interfaces for ensue thermal diffu- 
sivities. A reasonable approximation of the 
interfacial curve for unequal thermal diffusivities 
can be obtained by shifting the analyti~l 
solution curve in such a manner that the 
analytical curve becomes asymptotic to the 
lines representing the one-dimensional inter- 
faces for unequal thermal diffusivities. This shift 
can be made by calculating the radial coordinate 
$ of the new curve which approximates the 
interfacial curve for unequal thermal diffusivities, 
from the radial coordinate q of the analytical 
solution curve using the equations 

a a, 

W’b) 
where XX and Xl are the characteristic distances 
for the line representing the one-dimensional 
interfaces for unequal thermal diffusivities and 
are obtains from the equation [I] 

where 1 z XX for Tw = T$, and I z XY for 
T, = T&, When a&, = 1, equation (50) reduces 
to equation (41). 

When the shift is made according to equation 
(SO), two values for q’ at @’ = #J2 are obtained 
for the case of unequal temperatures at the 
surfaces of the wedge. An arithmetic average of 
these two values can be taken to get a unique 
value for # at C# = 4,/Z. However, for equal 
temperatures at the wedge surfaces only one 
value for q’ at Cp’ = #,/2 will be obtained from 
the equations. 

For example, for the case of the temperatures 
at the surfaces of a 90 degree wedge equal, with 
/? = 0.6, T; = O-5, and aJaL = 25, the inter- 
facial curve obtained by Rathjen [S) using a 
numerical method is plotted in Fig. 7. The 
curves obtained by the original analytical solu- 
tion and after making the shift according to 
equation (SO) are plotted in the same figure. 
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ANALYTICAL SOLUTION 
(aS/aL = I.01 case are: $0 = 90”, /I = 0.5, TT = 0.2751, T” = 

INTERFACIAL CURVE AFTER - 07143andc& = 1.111. 
MAKING THE SHIFT The interfacial curve obtained from the 
RATHJEN’S [8] NUMERICAL 
SOLUTION FOR (‘.IS/aL=2 51 analytical solution is plotted in Fig. 9. It agrees 

with Lazaridis’ [lo] numerical solution to 

+o=90’ 

Ti * q 0.5 

@ = 0.6 

Cl 
20 

a 
I.6 

1.6 E 

x 

/ : 

i ‘\4 
._ ,,o_ p=33.9 

Ti*= 1.35 
/ 

////MO,‘5 ,‘I///// ,,‘o/////// ,,‘&////// 2;. ,//,I,,,A ,“o.e- 

0.6 - 

FIG. 7. Interfacial curves for solidification of a material with 
unequal thermal diffusivities in an internal corner. 

0.4- 

0.2 - 

Although the curve from the original analytical 
solution deviates from Rathjen’s results by as 

much as 30 per cent, the curve obtained after 
making the shift deviates from that of Rathjen’s 

by no more than 5 per cent. 
The results from the general analytical solu- 

tion with the appropriate shift of the interfacial 
curve to correct for unequal thermal diffusivities 
predicts the experimental measurements of 

Jiji et al [9] for freezing of water (CQCQ = 9.2) 
in an internal corner to within 5 per cent. The 
experimental and the calculated values of x,, 
(see Fig. 8 for definition of x,,) at various times 

for three pairs of TF and p are plotted as x0 
VS. V/t in Fig. 8. The curves are straight lines 
because of the similarity conditions. 

ANALYTICAL 
SOLUTION (.S/aL= 1.0) 

POSlTlON AFTER 
THE SHIFT 

EXPERIMENTAL 

’ II 11 11 I I I 
2468 IO 12 14 16 I8 20 

1.6 r 
1.6 - 

1.4 - 

g 1.2- 
.c 

: l.O- 
.- 

,0.6- 

x 
0.6 - 

0.4 

0.2 1 

p=22.4 

Ti”0.553 
/ 

R = 19.6 / 

0 ’ ’ ’ L ’ // , 1-u 
2 4 6 8 IO 120 2 4 6 8 IO 12 

dT. t in minutes 

FIG. 8. Plot of location of interracial curve along the diagonal 
VS. Jr for solidification of water in a square container. 

Example 3 
A liquid is initially at a temperature higher within 5 per cent. If the necessary shift in the 

than its fusion temperature, but the surfaces of interfacial curve is made to account for unequal 
the wedge are maintained at unequal tempera- thermal diffusivities, then the agreement with 
tures lower than the fusion temperature. Lazaridis’ numerical solution is even better than 

The value of the pertinent parameters for this 5 per cent. 
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- ANALYTICAL SOLUTION 
(as/aL = 1.0) 
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FIG. 9. Interfacial curves for internal corner with the liquid 
initially at uniform temperature and the surfaces maintained 

at unequal temperatures. 
5, 

4. CONCLUSIONS 

The process of freezing and melting in a 
wedge shaped enclosure has been analyzed 
for the conditions that the initial temperature 
of the freezing liquid or the melting solid is 
uniform and the wedge surfaces are maintained 
at uniform, but not necessarily equal tempera- 
tures. The results of this analysis agree within 
5 per cent with results of numerical and experi- 
mental investigations. The analysis presented in 
this paper yields equations for the shape of the 
solid-liquid interface and the temperature distri- 
bution in the solid and in the liquid phase, 
assuming that conduction is the dominant mode 
of heat transfer in both phases. To extend the 
range of applicability of the analytical results 
presented here, it is recommended that the 
influence of convection in the liquid on the 
process be investigated. 
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TRANSFERT THERMIQUE AVEC FUSION OU SOLIDIFICATION DANS UN DIEDRE 

RbumL Le but de cette recberche etait d’obtenir une solution analytique de la distribution dc temperature 
et du mouvement de l’interface dans un liquide pur ou un affiage eutectique qui se soliditie ou fond dans un 
espace en forme de diedre. Dans cette analyse, on suppose que la temperature initiale du milieu est uniforme 
et que les surfaces du diedre sont maintenues a des temperatures uniformcs mais non ntcessairement egafes. 

La solution du probftme a Cte obtenue par la superposition des solutions de deux problemes auxiliaires. 
Le premier est fe probleme de la conduction thermique sans changement de phase, mais avec les m&mes 
conditions initiales et aux fimites que celles du probleme Ctudie. Le second sous-probleme est cefui de la 
conduction thermique avec changement de phase. mais pour des temperatures initiales et aux limites 
&gales a zero. Dans ce dernier sous-probltme. la chaleur fatente fibtree due au changement de phase est 
reprisentee par une source surfacique mobile le long de l’interface. Les distributions de temperature pour 
ces probftmes auxiliaires ont et& obtenues a f’aide de la fonction de Green. La solution analytique presentee 

ici s’accorde a mieux que 5 pour cent avec des resuftats experimentaux ou numeriques deja pubfiis. 

WARMEtiBERTRAGUNG MIT SCHMELZEN ODER ERSTARREN 
IN EINEM KEILFijRMIGEN HOHLRAUM 

Zusammenfassune Das Zief dieser Untersuchung war eine analytische Losung fur die Temperatur- 
verteilung und die Bewegung der Trennfllche in einer reinen Ffiissigkeit oder einer eutektischen Legierung, 
die in einem keilfiirmigen Hohlraum schmilzt oder sich verfestigt. In der Analyse wurde angenommen, 
dass die Anfangstemperatur des Mediums gleichfijrmig ist und dass die Flachen des Keils auf gfeichfiirmigen, 
aber nicht notwendigerweise auf gleichen Temperaturen gehalten werden. 

Die Losung ffir dieses Problem erhalt man, indem man die Losungen fur zwei Hilfsprobfeme iiberlagert. 
Das erste war das Problem der Warmefeitung ohne Phasenanderung aber mit densefben Anfangs- und 
Randbedingungen wie im vorliegen Fall. Das zweite war Warmeleitung mit Phasenanderung aber mit den 
Anfangs- und Randtemperaturen gleich Null, wobei Warme frei gesetzt wird entsprechend einer 
Phasenlnderung die durch eine bewegte Trennflache mit gleichfiirmiger Queffenverteilung dargestefft wird. 
Fur die Losung dieser Hiffsprobleme wurde die Green’sche Funktion benutzt. Die Ergebnisse dieser 
anafytischen Losung stimmen mit friiheren Veriiffentlichungen tiber experimentefle und numerische 

Ergebnisse ffir Speziaffafle bis auf 5 Prozent genau iiberein. 

,\HHOTal[Hn-I[eJiLH, ,!(afiHorO MCC~l~~~OB~HIlJI 6Ll.N ~H~JIHTIILlCCliCl~ Il”<‘VeT ~ElCII~~C!~t?~It?HHJ3 

TeMIEpElTgp 11 ~BMH(eHLIH I-PkIHklI~L pa:3#3Ikl @:I H ‘1MCTOti iKllWOCTII C11IIS 3UTefiTM’leCKOM 

rn~ra~e npn nnan3ennn it;rn aaTsep~,euaarrn n K.~IHoo~~I)~:~Ho~~ chop~c. H nporfecce anaanaa 
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