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Abstract—The objective of this research was to obtain an analytical solution to predict the temperature
distribution and the motion of the interface in a pure liquid or eutectic alloy solidifying or melting in a
wedge shaped enclosure. In the analysis it was assumed that the initial temperature of the medium is
uniform and the surfaces of the wedge are maintained at uniform, but not necessarily equal, temperatures.

The solution to the problem was obtained by the superposition of the solutions to two auxiliary problems.
The first of these was the problem of heat conduction without phase change, but with the same initial and
boundary conditions as those of the actual problem. The second subproblem was that of heat conduction
with change of phase, but with the initial and boundary temperatures equal to zero. In the later subproblem
the latent heat liberated due to the phase change was represented by a moving surface source along the
interface. The temperature distributions for these auxiliary problems were obtained by using Green’s
function.

The results of the analytical solution presented here agree with previously published experimental and

numerical results for special cases to within 5 per cent.

NOMENCLATURE T, initial temperature;

a, characteristic parameter in the T*, dimensionless initial tempera-
equation of the hyperbola; ture:

b, arbitrary constant; T, temperature in the liquid

¢, specific heat; region:

T,ig unit normals in r and ¢ direc- Ty, dimensionless temperature in
tions; the liquid region;

k, thermal conductivity; T, temperature in the solid region;

L, latent heat of fusion; T* dimensionless temperature in

n, integer constant; the solid region;

P, temperature distribution due T T, surface temperatures at ¢ = 0
to conduction only; R and ¢ = ¢, respectively:

0, temperature distribution due a, thermal diffusivity;
to moving surface source; B, latent heat to sensible heat

r, radial co-ordinate; ratio (L/pc(T, — T, )):

r integration variable; v, T, integration variables;

r¥, dimensionless radial co-ordi- AA iy, AL, l’y, characteristic distances for
nate; one-dimensional interfaces;

t, time; o, angular co-ordinate.

t, integration time variable;

T dimensionless temperature Subscripts
field; F, fusion quantity;

T, fusion temperature; i, initial quantity;

+ Now, R. K. Budhia Co., Main Rd., Ranchi Bihar, L, %lquld quantity;

India. D, index;
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s, solid quantity.

Functions
erf x, error function;
erfc x, complementary error function;
exp(x) or e*, exponential function;
Ip(x), modified Bessel function of

first kind;

J p(x), Bessel function of first kind ;
G(r,¢,r',¢';t,t"), Green’sfunction;
R(¢,1),R'(¢), functions for the interfacial

curve.

1. INTRODUCTION

HEeaT transfer with a change of state due to
melting or freezing occurs in many engineering
systems, e.g. solidification of castings, freezing
and thawing of foodstuffs and soil, constant-
temperature sinks for energy-storage devices,
and geophysical phenomena of ice formation.
In all these problems there exists a moving free
boundary, separating the liquid and the solid
phases, whose location and shape are not known
a priori. Since the temperature distributions in
the two phases depends on the location and
shape of this interface, it is necessary to consider
the temperature distributions and the interface
motion simultaneously in any analyses of such
problems, Moreover, these systems are non-
linear in nature due to the energy balance at the
moving interface [1].

Two excellent reviews [2, 3] of the field show
that till 1963 published work in heat transfer
with melting or freezing was limited to problems
which can be described in terms of a single space
variable. In most practical situations, however,
one encounters two- or three-dimensional prob-
lems and since 1963 several investigations
dealing with two- or three-dimensional systems
have been reported in the literature [4-101.

Allen and Severn [4] and Poots [ 5] presented
approximate solutions for the solidification of a
liquid initially at freezing temperature in a
square prism with the boundaries of the prism
maintained at a constant temperature. Springer
and Olson [6] developed a finite difference
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scheme for axisymmetric solidification or melt-
ing of materials contained within two concentric
cylinders of finite length. Their difference scheme
has provision for variable thermal properties
and various boundary conditions. Sikarskie and
Boley [7] obtained solutions for two problems
in which two-dimensional effects were intro-
duced by spatial variations of heating or cooling
conditions along one boundary surface of a
slab. Rathjen [8] has presented an analytical
solution for melting or freezing in an infinite
rectangular internal corner with the material
initially at a uniform temperature and the sur-
faces maintained at a constant temperature, and
compared his analytical results with those of a
numerical scheme for the same problem. Jiji
et al. [9] published some experimental results
for freezing of water in an internal corner and
compared their experimental results with those
obtained numerically by Rathjen [8]. Recently,
Lazaridis [10] published a numerical scheme
to treat multidimensional problems with boun-
dary conditions of constant temperature and
Newtonian cooling.

This paper presents analytical solutions for
melting or freezing of materials in wedge
shaped enclosures with wedge angle between
0- and 360-degrees. The postulates used in the
solutions are: (1) The material has a sharp
fusion temperature. {2) The thermal and physical
properties of the solid and liquid phases are
constant and are independent of temperature.
(3) The initial temperature of the material inside
the wedge is uniform and the surfaces of the
wedge are kept at constant, but not necessarily
equal, temperatures. The analytical solutions
presented in this paper can be used directly
in many engineering applications and can also
serve as “starting” solutions for numerical
analyses.

2. METHOD OF ANALYSIS

Suppose a liquid at a uniform temperature
T; greater than or equal to its freezing tem-

perature T, fills a wedge shaped space as
shown in Fig. 1. At time zero (¢t = 0), the two
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faces of the wedge (¢ =0 and ¢ = ¢,) are
suddenly brought to constant temperatures
lower than T,. Solidification starts at both faces
and as time progresses the boundary between
the solid and liquid phases moves into the
liquid phase. If the density of each phase is
uniform, heat is transferred in both phases only
by conduction and the problem can be stated
mathematically as follows:

PT 16T, 1 8*T, 10T,
arls+7a,_f+_2ﬁ %o
0<r<R@DO<P<¢, (1)
T, 16T+iﬂ=i§£
o ror Pt ot w Ot
‘R, )< r<xw,0<¢ <@, (2)
T=T,_ $p=0r>01>0 (3)
I.=T, ¢ =0¢u,r>0:t>0 (4)
T, =T 0< ¢ <o,
O<r<oo att=0 (5)
T, =T 0<¢ <9,
Fr—=>ocit>0 (6)
T =T =T, 0<d¢<g,

=R(g.t);t>0 (7)

1 [OR\?
R 5?43)
ST

<k __6 —k, )[1+
or
ot

atr = R(¢,1),0 < ¢ < ¢,:t >0
0<¢p<d,t=0 9

where T(r, ¢, t) and Ty (r, ¢, t) are the tempera-
ture distributions in the solid and the liquid
phases respectively, R(¢, ¢) is the function which
specifies the shape and location of the unknown
phase boundary, T and T, are the surface
temperatures, o_and a, are thermal diffusivities
in the liquid and solid phases respectively, and

Lis the latent heat of fusion.

R=0

Equations (7)-(9) describe the conditions
at the interface. Equation (7) states that the
temperature at the interface between the solid
and the liquid phase equals the freezing tem-
perature. Equation (8) represents the energy
balance at the interface, i.e. the heat conducted
away through the solid phase equals the heat
reaching the interface from the liquid phase plus
the latent heat generated due to solidification.
Equation (9) gives the initial position of the
interface.

With subscripts s and Linterchanged, Equa-
tions (1)-(9) represent the mathematical state-
ment of a solid material melting in a wedge
shaped enclosure. For the melting problem the
surface temperatures T and T, are higher
than the fusion temperature and the latent heat
in equation (8) is negative because heat is
absorbed at the interface during melting.

Similarity in the problem

As shown below, a similarity transformation
can reduce the number of independent variables
for the problem from three (r,¢.1) to two
[r/\/(4at)] and ¢. As a result of the similarity in
the svstem the equation of the interface can be
written as

r = R(¢.1) = \/(4at)R (¢)

where R’ is a function of ¢ only.
To show that similarity exists, define new
function T > R (for b > 0)as follows:

(10)

T(r, ¢, 1:b) = T(br, ¢, b%1)
T.(r, d.1:b) = T (br, ¢, b*1)
R(r,¢,t:b) = %R(d), b?1).

It can easily be verified that these functions
also satlsfy equatlons (1)+9). The new functions
T, T, and R must, therefore, be equal to 1, T,
and R respectively, because both satlsfy the
same initial-boundary value problem:

T(r,¢.1:b) = T(br, ¢, b%t) = T(r, $,1)
T,(r, ¢, 1) = T(br, b, b*1) = T,(r, §. 1)
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R, t;b) = %R(d), b*t) = R(¢, 1).

These three equations are identities in r, ¢, t
and b. Thus, they hold in particular for b*t =
1/4a, which gives:

T(r, ¢, 1) = T[r/\/(4ar), $,1/4]
= T.[r/\/(4at), §]
T(r,¢.t) = T,[r/\/(4at), $, 1/42]
= T, [r/\/(4u), ¢]
R(¢,1) = \J(4at)R(, 1/2) = |/(4ar)R ().

T,, Ty and R, which constitute the solution to
the problem, are therefore only functions of the
two independent variables r/\/(4rxt) and ¢.

In the method of solution presented below,
the similarity condition has not been used at
the outset to reduce the number of independent
variables in the diffusion equations. It will be
shown later, however, that the independent
variables r, ¢, ¢ in the solution can be combined
into the two variables r/,/(4xt) and ¢. The reason
for presenting the similarity argument at this
point is to show that the equation of the inter-
face is given by equation (10). This equation
implies that the moving interface can be plotted
into a stationary one by using r/\/ {4uat) and ¢ as
the coordinates.

Method of solution
Introducing the dimensionless temperature
variables

T - T
T* = s F
y —_Tp o7 (11a)
k, T, — T,
T* = L L "F
t ks T;- - wa (llb)
equations (1}«9) become:
o*T*  10T* 4 1-02T* _ 10T} 12)
ot ror  rtogr a0t (
Ty 1oTp 1T, 1oy
o T ror rfog®  a, 4t

T*=T! =-1 ¢=0r>0;t>0 (14)
T:=T, ¢ =¢pr>0t>0 (15
k, T —T,
* o Tk L1 F
TL l ksTF_wa
0<dp<o,r>0t=0 (16)
T =T 0<¢d <y r—-00:t>0 (17)
T* =T =0
0<¢<dyr=R(@1);t>0 (18)
oT* o0T¥ 1 {OR\?
k s _ 2L ==
s(@r 6r><1+R<6¢>>
pL  OR
(T, —-T,) o (19)
atr = R(¢,1),0 < ¢ < ¢,5t>0
R=0 0<¢<oy;t=0. (20)

To make the problem analytically tractable,
assume that the thermat diffusivities in the liquid
and solid phases are equal, ie. o, =a, =a.
Under this assumption, the heat conduction
process in the solid and liquid phases described
by equations (12) and (13) can be represented
by the single equation:

T 18T 1 6T 10T

orr ror  r*og*  adt
with T = T¥* in the solid phase and
with T = T¥ in the liquid phase.

The assumption that the thermal diffusivities
are equal is not necessary when the liquid is
initially at the freezing temperature (TF = 0)
because there is no heat diffusion in the liquid
phase for this case. An empirical method to
correct for the error introduced by this assump-
tion when the liquid is initially a temperature
above the freezing point will be presented later.

The problem now reduces to solving equation
(21). The various conditions to be satisfied by
T(r,¢,t) are given by equations (14)+20) in
which T is substituted for T* and T}. The
method of superposition of the solutions of
two separate problems will be used to solve the

(21
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problem stated above. The two subproblems
used to construct the solutions are:

(a) The problem of heat conduction, without
change of phase, in a medium initially at T}
with the wedge surfaces ¢ =0 and ¢ = ¢,
changed to, and maintained at, constant tem-
peratures T and T3, respectively, for all
timest > 0.

(b) The problem of a moving source of heat
at the interface [r = R(¢,1)] in a medium
initially at zero temperature with the wedge
surfaces maintained at zero temperatures. The
moving source at the interface replaces the
latent heat generated due to the phase change.

The superposition solution is stated mathe-
matically below:

T(r~ ¢’ l) = P(r’ ¢7 t) + Q(rv ¢’ t) (22)

where P(r, ¢, t) is the solution to the conduction
problem without change of phase and Q(r, ¢, 1)
is solution to the “moving source” problem.

The pure conduction problem can be posed as

ért ror rrod*r ot
with the conditions
Pr,0,) =T* = -1 (24)
P(r. ¢y, 1) (25)
P(r,¢.0) = (26)

while the function Q(r, ¢, t) must satisfy the
equation

Y 10°%Q 100

PR S ro
with the conditions
Q(r,0,) =0 (28)
Q(r. ¢4, 1) (29)
0(r,9,0) = 0. (30)
P-solution

The P-solution was obtained by means of
Green’s function. The appropriate Green’s func-

tion G(r, ¢, 7', @' t,t') must satisfy the conduction
equation with a homogeneous boundary condi-
tion of the first kind subject to zero initial
conditions. Carslaw and Jaeger [1] give the
following expression for the Green’s function
in a wedge shaped space:

G = ¢OZsm po sin po’

fcexp[aé (t—1)]J[(

An equivalent expression for equation (31a)
in somewhat more convenient form is:

——Q ” (tl — t,)Zsin p¢ sin pd’
0

p
X exp(—

r2 4+ r? rr
doft — t’))'IP <2cx(t - t’)> (316)

wherep = nn/¢,,n = 1,2,3,... ©

1, = Modified Bessel function of first kind of
order p and J, = Bessel function of first kind of
order p.

According to Ozisik [11] the expression for
P(r, ¢, t) can be written in terms of G(r, ¢, ', ¢';
t, t') as follows:

)-J,(&r)dé. (31a)

G=

> do
Pr,¢, 1) = j. j Gl, o TF.r.d¢' dr
rF=06=0
A “ |
+ 2 J dfj(“,*a-c‘;;) T dr
J ] r o o'=0

t
— T* dr.
wy
¢ =0

. ,
t [es) a
i (10G
o f dr J(r, 6¢’) (32)
t'=0 0
The first term on the right-hand side of
equation (32) accounts for the effect of the
initial temperature whereas the second and the
third terms together represent the effects of the
boundary conditions.
The first term in equation (32} is evaluated by
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substituting for G from equation (31b). With
this substitution the first term becomes

Po

qﬁTit J j Esin po sin pd’
0

=0 =077
r? 4+ 2 r

— .1 ¥ de'.dr.

4ot ) ”<2at> v dg’.dr

X exp(—

This expression can be reduced further by
integrating with respect to ¢’ and then substitut-
ing the dimensionless variables v = r'/,/(4a1)
and r* = r//(4at); this yields the expression
4T¥
o

p

X i vexp [ —(r*? + v3)] . 1 (2r*v)dv.  (33)

sin pp [l — cospg,]

The integral in the preceding expression
has to be evaluated numerically. For convenience
in computation the order of summation and
integration will be interchanged. Making this
change and reordering some of the terms, the
expression can be written as:

8T*
¢,
[

—(r*— ‘,)z

[\ Vsin p’ .
X z I,)(pe"“’.
L P

I p’( 2vr*):| .dv
14

where p' = 2n + Un/¢p, and n =0,1,2,...

The integral was evaluated numerically by
using the forty-point Gaussian-Legendre quad-
rature formula [14]. For this purpose the upper
limit of the integral was replaced by a finite
limit either equal to (r* + 5) or two times r*,
whichever was greater. The infinite series in
the brackets converges for finite values of v and
r* because the function e~ 2" I’ (2vr*) decreases
monotonically with increasing p’. The infinite
series was truncated at that value of p’ for
whiche™ """ I' (2vr*) < 107°,

The difference between the second and third

ve
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terms on the right-hand side of equation (32),
which accounts for the effects of the boundary
conditions, was evaluated by substituting equa-
tion (31a) for G. This substitution yields

20

? Z(T* - T* cos pd) }.p.sin p¢

X Jdt’J%— J Eexp [ —ag®(t — t']
0 0 0

x J(Cr) J(&r).d¢

After integration with respect to ¢ and r
the above expression reduces to

2

(T, — T, cos pdg).sin pd
¢o

[ J TH) 4 _ fe_; T (& dé}

If the first integral in the brackets is evaluated
as shown in [12], the preceding expression
becomes

L Sinpp 2

2 i 2 sin p¢

— T T*

¢OZ "op %Z A
2 (T}, — T} cos pg,)
¢0§ : 0

p

o0

sin p JJ (f £ e *de,

Some of the infinite series in the above
expression can be summed by using the relations

[13]

ism (/o) _ ”(A ¢ )
h 2 29,

n=1

0<d/p, <2
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]

Z(_l)mﬂm#/d’_o):

n=1

¢
o
- 1< ¢/dp, < L

Substituting these series and letting u = ¢r,
the original expression can be written as

n( ) ()

2
— a z (T — Tw*y cos pd,,)
0

14

ST}

x sin p¢ . JM e @i dyy > 0,
u

0o
The integrals in the above expression can be
evaluated by using the relation [12]

f']g(u) ettt g,

2
e—r2/8ar I ’;A
(p+1)/2 Sat

r2
+ Tip- 12 (@)]

Finally, the difference between the second and
third terms on the right-hand side of equation
(32) is given in terms of dimensionless space
variable r*

A
n(g)

- _\/n r* (T* - ijcospd)o) . sin p$
¢ z
14

p

_,.*2/2 r*2 r*Z
X € I(p+“/2 —i" + I(p-l)/2 —5_ . (34)

The infinite series in the third term of equation
(34) is truncated at that value of p for which

e D) [, 1,/Z(r*2/2) + I(p+“/2(r*2/2] <107°

Combining (33) and (34), the P-solution can
be written as

a

*
P o) = f ye-tr

0
0

x [Z Snpe .- 2”’*Ip,(2\7r*):| dv
P

P

f-g) ()

— %E r* Z (T* — Tw’?‘y cos p(bo).smppqﬁ

0

p

2
X e"“/z[T *22) + T (ij—>]
(p+1)/2 (p—1)/2 2 .

(35)

As a check, the P-solution computed by the
above method was compared with closed form
solutions available for 180- and 90-degree
corners [1] and it was found that the results
agreed within five decimal places.

Q-solution

The @-solution can be obtained by considering
a “moving surface source” of heat in the region
r>0,0 < ¢ < ¢, along the interface r = R(¢,
t). This heat source has physically the same effect
on the temperature field as the phase change and
replaces the latent-heat terms in the original
problem statement for the system. The tem-
perature distribution due to such a moving-
surface source can be obtained by using Green’s
function for the problem.

It is known that the Green’s function G(r, ¢,
¥, @' t,t') gives the temperature distribution due
to an instantaneous line source of unit strength
at (v, ¢') liberating (or absorbing) heat at t =’
in a medium initially at zero temperature with
the wedge surfaces maintained at zero tempera-
tures. Thus, the temperature distribution due to
the heat liberated by the moving surface-source
along the interface in time interval dt'(at ¢ = ')
can be obtained by integrating along the inter-
facial curve the product of G and the strength
of a differential source at (R'(¢,t),t) on the
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interface. The expression for the temperature
distribution obtained by this method can then
be integrated with respect to t' between the
limits ' =0 to t' =t to yield the temperature
distribution in the system with the moving
surface source liberating heat continuously for
t > 0 along the interface.

To obtain the strength of a differential source
at point (R(¢', '), t') on the curve the following
procedure was used: An infinitesimal length
(dl) of the curve at (R(¢'.t).t") is equal to
VI(6R/0¢'Y + R*].d¢'. The normal velocity of
the moving source at (R. ¢') is

R.\ (. 1R, | L(0RY
(#) (-rzen ) welis)
or
R OR\?
< |7+ o)

where 7, and i, are unit normals in the r' and
¢’ directions with the direction of the normal
velocity in the direction away from the solid
phase.

The area covered by the infinitesimal length
(dI') of the moving source during time dt' is
R(6R/0t') d¢’ dt’. The latent heat liberated by
the differential source during time dt’ at (R,¢")
on the interfacial curve is

LpR(OR/ot)d¢' dt'.

The strength of the differential source is defined
as

1
pC(TF - wa) .
where the temperature difference (T, — T,,) is
introduced in the preceding expression to

normalize the temperature.
The Q-solution is therefore, given by

t ¢0
, OR
Q(r,¢,t)=Jdt JB'RW
0

(o}

oR .. ..
LpR = d¢' i

G(r’ ¢,s r,’ ¢,; t’ t/) d¢/‘
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Substituting equation (31b) for G gives:

0 y1) = %z

p

t $o
. dt R .,
xsmqujg__—t,—)JR.E.smpd)
0 0
r* + R? rR ,
X CXp(— m).lp<5“(t—_t—,)>d¢ (36)

The expression for Q(r, ¢, t) can be written in
terms of the dimensionless variables n = R/
J(@at),r*, and © = t//t. The choice of these
dimensionless variables is dictated by the simi-
larity conditions in the problem. Equation (10)
for the interface becomes in terms of #:

n=R(¢)

and the expression for Q becomes in terms of
the dimensionless variables

(37)

2
o) =7
o 14
1 ¢o
X sin p¢ jﬂ—j' n? sin pg’
1—-1
0 0
X exp<_ '72'15 i Z*Z>.Ip (2’7§\/j);r*> d¢’

(38)

where 7 is related to ¢’ by equation (37).

Once the function R'(¢p") is determined (or
specified) the integrals in the Q-solution can be
evaluation. numerically. For convenience in
numerical computation equation (38) can be
reordered and written as

1 %o
. o 2B dr
o@r*, ¢) = ¢—0 Jr_7 J n’
0 0
b exp<_ ne + 2ﬂ(\/r)r*>
-z -7
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X Z sin p¢ sin p¢’ exp( 2’?1(.\?/; ):*>

P

The infinite series in the above equation was
truncated at that value of p at which

exp(* 2?7(\/2:)1’*> , (2”(\/r)r*> < 1076,

1-1 -1
The double integral in the equation was evalu-
ated by using the Gaussian-Legendre quadra-
ture formula twice, once for ¢ and once for
¢’. A twenty-point Gaussian quadrature for-
mula was used for t in the range 0 < t < | and
a forty-point quadrature formula was used for
¢' in the range 0 < ¢’ < ¢, Increasing the
number of abscissa points in the quadrature
formula affects the value of the Q-solution only
in the fifth decimal place.

The P- and the Q-solutions can now be com-
bined according to equation {(22) to give the
dimensionless temperature distribution T{r*,¢)

*
T(r*, ¢) = S(Z; J ve o

0
0

X [Z §Epp¢ e~ 2] .(2vr*):' dv

¢ ¢
% [ § — *
¥ ( %) S

- -\-/jr*Z(?:z — T* cospd,).
b,

P
e r*2 r*2
x e, [I<p+ 1y2 (‘2_) o (‘z‘“ﬂ

1 do

qusmquI dr jn sin pg’
0

o~ P (I

1—-1 1—7
(39

sin pg

where
0<od <9,
0<¢ <,

The equation for the interface curve must be
known before the above expression can be used
to calculate the temperature distribution. To
obtain an analytical solution for the interface
curve, the condition at the interface given by
equation (18) can be used. This condition gives:

0
*
STE J‘ Ve_(,t_v)z
%o

¢

y ZSm{) ¢ e“zV'*Ip
L p

=

s(1_P\ s @
+TX (1 ¢0>+Tw¢0

L. Z(T* — T cospg,)
®,

smqu -2
o —— ! {I(p+n/2< )
I, 1)/2( )]

Zsmpqﬁjmqr—— j n* sin p¢’
Y]

r
2 *2 %
nir+r >1(2n\/rr)d¢

exp
1 -1 1 -

The point designated by co-ordinates (r*,¢)
in equation (40) lies on the interface, i.e. for any
given ¢, r* = R'(¢). Equation (40) is a non-
linear integro-differential equation for u or
R'(¢"). In principle, equation (40) could be solved
to get the expression for R'(¢'), which in turn
would give the equation for the interfacial
curve. However, because of its complexity

T=T*orr* <y
21N

__ * £ 3
= T for r*

,(2vr*):l dv

(40)
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equation (40) is not amenable to an analytic
solution. Instead, an equation for the inter-
facial curve was assumed initially and from it the
expression for R'(¢") was obtained.

The equation for the interfacial curve may
contain n parameters which can be evaluated
by solving n-simultaneous equations, obtained
by writing equation (40) for n points on the inter-
face. Because this procedure is terribly cum-
bersome, a one-parameter hyperbola was used
to represent the interface and the parameter was
evaluated by trial and error to satisfy equation
(40) at one point P on the interface as shown in
Figs. 1 and 2. A posteriori it will be shown that

%o

LIQUID - T,

z P INTERFACE - Tf

A ?
v SOLID-Tg Ay
o rrrTTITTIITTITTIIT T $ 2 O
Q r—
wa

F1G. 1. Schematic sketch illustrating solidification of a
liquid in a wedge (¢, < 180°).

the one-parameter hyperbola obtained in this
manner satisfies the condition imposed by
equation (40) at other points on the interface.
From the physical condition of the problem
it is apparent that the hyperbola chosen to
represent the interface must be asymptotic to
the lines AB and AC in Figs. 1 and 2. Far away
from the corner of the wedge the surfaces ¢ = 0
and ¢ = ¢,, respectively, will produce inter-
faces of AB and AC which can be predicted from
the one-dimensional Neumann’s solution [1].
The distances, 4, or 4, in Figs. 1 and 2, which
characterize the positions of the solid-liquid
interface for the one-dimensional case when the
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F1G. 2. Schematic sketch illustrating solidification of a liquid
outside a wedge (¢, > 180°) with unequal surface tem-
peratures.

thermal diffusivities of the liquid and solid
phases are equal, are given [1] by the equation:

Te * T* *
erf A erfc A
where A = A for T, = T* and

A=A forT = T*.
y w wy

= (JmBL (41

Obviously, when the surfaces of the wedge are
at equal temperatures, 4, = i, =4 and T} =
Ty =T,

The equation for the interface can be obtained
by writing the equation for a hyperbola with 4
as its pole and the shifting the pole from A4 to
the corner of the wedge. With A, and 1 known,
the equation for the one-parameter hyperbola
interface is given by the equation:

(nsing’ — A )*(sin’¢,/2 — cos@,/2)(cot! ¢y/2)
+ 2(nsing’ — A )(ncos¢’ — A_coty)cot,/2
= a* (42)

where,

J = cot™! (A/A) + cosd)o)
N sin ¢,
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and a is the flexible parameter in equation (42).

The function for n or R'(¢’) is now given in
implicit form by equation (42) but, as mentioned
previously, the characteristic parameter a must
be evaluated by trial and error.

To determine the value of the parameter q,
initially it was taken as zero corresponding to
the two asymptotic solutions intersecting. Then,
a was incremented in steps of 0-2 until the left
hand side of equation (40) was positive and
negative for two consecutive values of a. Finally,
linear interpolation was used to obtain the next
trial value for a. This process was repeated until
the left-hand side of equation (40) was zero to
within a tolerance of 40-001. With a specified,
the interfacial curve can be plotted by using
equation (42) and a check whether equation (40)
is satisfied at points other than P on the inter-
facial curve can be made.

For all cases discussed in the last section, the
value of ¢ which made the left hand side of
equation (40) equal to zero at point P within the
tolerance specified above, was within 10 per cent
of the value required to satisfy the interfacial
conditions at any other point r*, ¢. Thus, as
shown in more detail in Sec. I11, for all practical
purposes a one-parameter hyperbola can repre-
sent the interfacial curve with satisfactory
accuracy for most engineering calculations.

Once the interfacial curve is known, the
temperature distribution in the liquid and solid
phases are given by:

L=l - TJT0* ¢ + T,

for r* < R(¢),0< ¢ <, (43)
and
= (T~ TITO9) + T,
for r* > R'(¢),0 < ¢ < ¢,, (44)

where (r*, ¢) is given by equation (39).

Simplification of Q-solution when the temperature
of the two wedge surfaces are equal
When fhe face temperatures are equal, the

Q-solution given by equation (38) can be simpli-
fied by using the symmetry characteristics of the
solutions about the line ¢ = ¢,/2. From equa-
tions (37) and (42) the symmetry property gives
for the interface curve:

’ ’ ! ¢

n = R(¢) = R(¢, — ¢ ,—°\¢ < ¢, (45)
To make use of the symmetry condition

about the line ¢ = ¢,/2, the integral in equation

(38) is separated into two parts, or

dr

1
28
Q= ¢0 sin pd)j .

P
[ Jv n? sin pg’ exp <——" 21(\/_t),r+ ! 2)
For2
I (2'1(\/ r)r*> do'
P\ 1 -1
bo/2

+ j 1 sin pg’ exp(
0
x 1p<2’7(*/ o )dcp] (46)

The first integral with respect of ¢’ on the
right-hand side of equation (46) can be simplified
further by defining a new variable ® = ¢, — ¢'.
In terms of this new variable the first integral
becomes

(/1) + r*z)

1-1

0

- j n? sin p(¢, — @)exp<

—nJr+ r*2>

1—1
$o/2
<1, (%‘f—”j—) @ @)

and equation (45) becomes in terms of @
n = R(O).
Changing the integration variable from @ to

¢’ in (47), then substituting for the first integral
in equation (46), the expression for Q reduces to
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2 T
=— ) sin
0 e po Jl —
p 0
do/2

+ sin p¢’] d¢'.

For n odd, sinp(¢p — @) + sin pd’ = 2 sin po’
and for n even, sin p(¢ — ¢') + sinp¢’ = 0.

Therefore, the expression for Q simplifies to

48\ " . 1 dz

P 0

b2 2 *2
2 _nrTt+re
J rem(-75EF)
(/%
x 1 (-"(*i—r)tr> sinp'd’dg.  (48)

3. RESULTS AND DISCUSSION

As shown in the preceding section, the solution
to the problem of freezing or melting in a wedge-
shaped comer section includes the location of
the interface and the temperature distribution
in the solid and liquid phases. Using a single
parameter hyperbola with a characteristic para-
meter a, once the value of this parameter has
been determined from the appropriate integro-
differential equation, the interfacial curve can
be represented by equation (42) and the tempera-
ture distributions in the solid and liquid phases
are given by equations (43) and (44), respectively.

The solution contains the parameters ¢,
B, T¥, T* ,r* and ¢ and their ranges are:

wy’
0<¢,<2n
f=0
T*>20
T;, <0
O<r* <o 0< ¢ <d,.
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It is difficult to present results for all possible
combinations of independent parameters in a
comprehensive form. However, the method
presented here can be used to make calculations
for any combination and their accuracy can be
estimated from the results of several examples
which can be compared with data in the litera-
ture.

In the presentation below the simplest case is
considered first and subsequent examples follow
in an ascending order of difficulty.

Example 1

The liquid in an internal corner (90° wedge)
is at fusion temperature with the surfaces of the
wedge maintained at equal temperature lower
than the fusion temperature. The value of the
pertinent parameters are: ¢, = 90°, f = 1:5613,
T} =0,T; =T} =—1

The location of the interface is shown in Fig. 3.

—— ANALYTICAL, SOLUTION

O LAZARIDIS [10]
NUMERICAL SOLUTION

X RATHJEN'S [8] SOLUTION

B=15613
Ti'=0

* ..
Twx 'Twy =-1.0

B=025

Ti*=03
Tyx™ = Tyy*=-10
as/a =10

! |
0.57777777\ Q7777777 § 7777777 2 0 77777

¥

FiG. 3. Interfacial curve for internal corner with the surfaces

maintained at equal temperatures: (a) Liquid initially at the

fusion temperature; (b) Liquid initially at a uniform tem-

perature above the melting point. (Comparison of analysis
with results from [8] and [10].)

For comparison the numerical results of Laza-
ridis [10] for this case are also plotted in the
same figure. The interfacial curve obtained
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from the general analytical solution agrees with
Lazaridis’ numerical solution to within 5 per
cent.

1t should be noted that when the liguid is
initially at the fusion temperature there is no
diffusion of heat in the liquid phase and the
solution is, therefore, independent of the ratio
a/u;. In such a case, the analytical solution
presented in this paper is exact for any value
ofa jo, .

Example 2

Solidification of a liquid initially at a tempera-
ture higher than the fusion temperature with the
surfaces of the wedge at equal temperature but
lower than the fusion temperature.

For such cases the analytical solution is
exact when the ratio of the thermal diffusivity
in the solid to that in the liquid phase is unity.
For the cases where the ratio « /o, is not unity,
the analytical solution is not exact but will, as

- ANALYTICAL
SOLUTION
$o = 90° X RATHJEN [8]
03— 7 $.0.3
B =025
02—  ag/a = L0
ol LIQUID

T ALONG ¢ =45°
1 | t ]

©o o o o
(o ey (3 [+

t
o
*

-0.7
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shown later, give a good approximation for the
location of the interface with some empirical
corrections.

With the ratio of diffusivities is equal to unity
and ¢, = 90°, T} = 03, B = 0-25, the location
of the interface and the plot of T at ¢ = 45° vs.
r* are presented in Figs. 3 and 4, respectively.
The results from the general analytical solution
agree with those obtained by Rathjen [8] to
within 5 per cent.

In Figs. 5 and 6, the interfacial curves for
T} and several f’s are plotted for wedge angles
60 and 270 degrees respectively. No numerical
or experimental results for these wedge angles
are available in the literature for comparison.

When the ratio of thermal diffusivities is not
equal to unity, a first approximation for the
location of the interface can be obtained from
the analytical solution. An inprovement in
this approximation can be made by using the
following empirical approach.

It is known that either for equal or for
unequal thermal diffusivities of the two phases,
the interfacial curve at distances far away from
the corner must be asymptotic to the lines
representing the interfaces for the one dimen-
sional cases. For the analytical solution the
interfacial curve for the wedge has been made

'.‘

F1G. 4. Temperature along ¢ = 45° vs, r* for internal corner.

¢$o =60°
Ti*=0.3
Twx® = Twy**~1.0
ag/a =1.0
B=0
B=1.0 B=0.25
8=10.0
hiJ ; ; ;
1.0 2.0 3070

l"‘

F1G. 5. Interfacial curves for solidification in a 60°-wedge.
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F16. 5. Interfacial curves for solidification outside a 270°-wedge.

asymptotic to the lines representing the one-.

dimensional interfaces for equal thermal diffu-
sivities. A reasonable approximation of the
interfacial curve for unequal thermal diffusivities
can be obtained by shifting the analytical
solution curve in such a manner that the
analytical curve becomes asymptotic to the
lines representing the one-dimensional inter-
faces for unequal thermal diffusivities. This shift
can be made by calculating the radial coordinate
7' of the new curve which approximates the
interfacial curve for unequal thermal diffusivities,
from the radial coordinate # of the analytical
solution curve using the equations

n=n= - ;iné’x; 0 < ¢ <2 {49a)
Vo A=A :
ﬂ-ﬂ—m, P/2< P <,

(49b)

where 4 and A are the characteristic distances
for the line representing the one-dimensional
interfaces for unequal thermal diffusivities and
are obtained from the equation [1]

T Tt
erf X/ erfc [(o /o, )2A']

= (Jmp

where A=A, for T =T} and i1=4 for
T, = T:';y. Whena /o, = 1,equation (50) reduces
to equation (41).

When the shift is made according to equation
(50), two values for ' at ¢’ = ¢,/2 are obtained
for the case of unequal temperatures at the
surfaces of the wedge. An arithmetic average of
these two values can be taken to get a unique
value for # at ¢’ = ¢,/2. However, for equal
temperatures at the wedge surfaces only one
value for ' at ¢' = ¢,/2 will be obtained from
the equations.

For example, for the case of the temperatures
at the surfaces of a 90 degree wedge equal, with
B =06, Tf =05, and aja, =25, the inter-
facial curve obtained by Rathjen [8] using a
numerical method is plotted in Fig. 7. The
curves obtained by the original analytical solu-
tion and after making the shift according to
equation (50) are plotted in the same figure.

(50)
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—— ANALYTICAL SOLUTION
(ag/a =1.0)

—-= INTERFACIAL CURVE AFTER
MAKING THE SHIFT

—— RATHUJUEN’S [8] NUMERICAL
SOLUTION FOR (ag/a  =2.5)

$g=90°
Ti*=05
i B=06

FiG. 7. Interfacial curves for solidification of a material with
unequal thermal diffusivities in an internal corner.

Although the curve from the original analytical
solution deviates from Rathjen’s results by as
much as 30 per cent, the curve obtained after
making the shift deviates from that of Rathjen’s
by no more than S per cent.

The results from the general analytical solu-
tion with the appropriate shift of the interfacial
curve to correct for unequal thermal diffusivities
predicts the experimental measurements of
Jiji et al [9] for freezing of water (a /o, = 9-2)
in an internal corner to within 5 per cent. The
experimental and the calculated values of x,
(see Fig. 8 for definition of x,) at various times
for three pairs of T and f are plotted as x,
vs. |/t in Fig. 8. The curves are straight lines
because of the similarity conditions.

Example 3

A liquid is initially at a temperature higher
than its fusion temperature, but the surfaces of
the wedge are maintained at unequal tempera-
tures lower than the fusion temperature.

The value of the pertinent parameters for this

caseare: ¢, = 90°, 8 = 05, T = 02751, T} =
— 07143 and o jor, = 1-111.

The interfacial curve obtained from the
analytical solution is plotted in Fig. 9. It agrees
with Lazaridis’ [10] numerical solution to

O ANALYTICAL
SOLUTION (ag/ai =1.0)

A POSITION AFTER
THE SHIFT

X EXPERIMENTAL
DATA FROM
Jut et al, [9]

B=33.9
T;*=1.35

) ] 1 ! I | | 1 1 t 1
2 4 6 8 10 12 14 16 18 20

B=19.6
Ti*®=0.25 /

2 4 6 8 101202 4 6 8 10 I2
Y1, t in minutes

F1G. 8. Plot of location of interfacial curve along the diagonal
vs. |/t for solidification of water in a square container.

within 5 per cent. If the necessary shift in the
interfacial curve is made to account for unequal
thermal diffusivities, then the agreement with
Lazaridis’ numerical solution is even better than
5 per cent.



210

— ANALYTICAL SOLUTION
{@g/a =1.0)

= = LAZARIDIS [i0] NUMERICAL
SOLUTION (ag/a; = I[.11)

$o 90°
B:0.5
Ti*=0.25714

| wa'='|.0

| Twy’ = -0.71429

\

\ ¢ Il 1 i 1

0.5/ 1.0 1.5 2.0
'.0

FiG. 9. Interfacial curves for internal corner with the liquid
initially at uniform temperature and the surfaces maintained
at unequal temperatures.

4. CONCLUSIONS

The process of freezing and melting in a
wedge shaped enclosure has been analyzed
for the conditions that the initial temperature
of the freezing liquid or the melting solid is
uniform and the wedge surfaces are maintained
at uniform, but not necessarily equal tempera-
tures. The results of this analysis agree within
5 per cent with results of numerical and experi-
mental investigations. The analysis presented in
this paper yields equations for the shape of the
solid-liquid interface and the temperature distri-
bution in the solid and in the liquid phase,
assuming that conduction is the dominant mode
of heat transfer in both phases. To extend the
range of applicability of the analytical results
presented here, it is recommended that the
influence of convection in the liquid on the
process be investigated.

H. BUDHIA and F. KREITH
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TRANSFERT THERMIQUE AVEC FUSION OU SOLIDIFICATION DANS, UN DIEDRE

Résumé— Le but de cette recherche était d’obtenir une solution analytique de la distribution de température
et du mouvement de I'interface dans un liquide pur ou un alliage eutectique qui se solidifie ou fond dans un
espace en forme de diédre. Dans cette analyse, on suppose que la température initiale du milieu est uniforme
et que les surfaces du diédre sont maintenues a des températures uniformes mais non nécessairement égales.
La solution du probléme a été obtenue par la superposition des solutions de deux problemes auxiliaires.
Le premier est le probléme de la conduction thermique sans changement de phase, mais avec les mémes
conditions initiales et aux limites que celles du probléme ¢étudié. Le second sous-probléme est celui de la
conduction thermique avec changement de phase, mais pour des températures initiales et aux limites
égales A zéro. Dans ce dernier sous-probléme, la chaleur latente libérée due au changement de phase est
représentée par une source surfagique mobile le long de I'interface. Les distributions de température pour
ces problémes auxiliaires ont été obtenues a I'aide de la fonction de Green. La solution analytique présentée
ici s’accorde a mieux que 5 pour cent avec des résultats expérimentaux ou numériques déja publiés.

WARMEUBERTRAGUNG MIT SCHMELZEN ODER ERSTARREN
IN EINEM KEILFORMIGEN HOHLRAUM

Zusammenfassung— Das Ziel dieser Untersuchung war eine analytische Losung fiir die Temperatur-
verteilung und die Bewegung der Trennfliche in einer reinen Fliissigkeit oder einer eutektischen Legierung,
die in einem keilférmigen Hohlraum schmilzt oder sich verfestigt. In der Analyse wurde angenommen,
dass die Anfangstemperatur des Mediums gleichformig ist und dass die Flichen des Keils auf gleichférmigen,
aber nicht notwendigerweise auf gleichen Temperaturen gehalten werden.

Die Losung fiir dieses Problem erhilt man, indem man die Losungen fiir zwei Hilfsprobleme iiberlagert.
Das erste war das Problem der Wirmeleitung ohne Phasendnderung aber mit denselben Anfangs- und
Randbedingungen wie im vorliegen Fall. Das zweite war Wirmeleitung mit Phaseninderung, aber mit den
Anfangs- und Randtemperaturen gleich Null, wobei Wirme frei gesetzt wird entsprechend einer
Phaseninderung, die durch eine bewegte Trennflache mit gleichférmiger Quellenverteilung dargestellt wird.
Fiir die Losung dieser Hilfsprobleme wurde die Green’sche Funktion benutzt. Die Ergebnisse dieser
analytischen LJsung stimmen mit fritheren Verdffentlichungen iiber experimentelle und numerische

Ergebnisse fiir Spezialfille bis auf 5 Prozent genau iiberein.

TENJOOBMEH 1IPH [IABJEHUKM U OTBEPJAEBAHUM B KIUWHOOBPA3{ION
OOPME

AHHOTAIMA—I[EAbI0 JAaHHOTO HCCIACAOBAHHA OB AQHAIMTHYECKUH pacder pacHpejeseHUs
TeMIEPATYp W JIBHKEHHs CPaHMIb pasfgena (as B YMCTOH HUAKOCTH MU HBTEKTHYECHOM
CTJIaBe NpU NJIABJIEHHN HJM 3aTBePIeBaHUM B KIuHooOpasHoi (popme. B mpomecce anaausa
{IpeJN0aarajoch, YT0 Ha4YaJIbHAA TeMIleparypa cpeanl H TeMIepaTypa NOBePXHOCTH KINHA
HOCTOAHHLL, HO HEOOABATENILHO PABHBI. 334a4a Pelajach UyTeM HAJOMHEHUA pelleduil aByx
BCHOMAraTeJbHBIX 3aJad: 3a1a4M TeILIONPOBOIHOCTH IMPU OTCYTCTBHM (Az0BOr0 mepexoja
HpU TeX e HAYAJBHBIX U PPAHMYHBIX YCJIOBMAX U 3a[a4i TEIJIONPOBOIHOCTH HpH (pasoBeX
M3MEHEHHHX ¢ HYJEBHIMH HAYATbHLIMU I TPAHHUYHBIMHU YCIOBUAMH. B nocejeHem caydae
CKPBHITAF TENIIOTA, BBLIGJACHHAA NMpu (a30BOM M3MEHEHUN, NPEJCTABIICHA 110BEPXHOCTHBIM
HCTOMHUIKOM , ABMMYILMMCA BLOJb [OBEPXHOCTH pasgesa. Pacnperenedus temneparypel 1ias
DTUX RBCHOMOFATENBHBIX 3aJad [oJy4yeHb ¢ nomMowplo Gyukmun Fpuna. ITpeacrasieHHbie
31eCh PeAYILTATH AHAIHTHYECKOTO pPENIeHHH COIVIACYIOTCA ¢ paHee OnyO.IMKOBAHHBIMHU
AKCTePHUMEHTATILHBIMIL I UHCJCHHRIMH PesYJbTaTam il A5 OT1EAbUEIX, C1YHAeD ¢ TOYHOCTHIO
10 B,
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